
Learning What to Value

Daniel Dewey

Machine Intelligence Research Institute

Abstract. We examine ultraintelligent reinforcement learning agents.
Reinforcement learning can only be used in the real world to define agents
whose goal is to maximize expected rewards, and since this goal does not
match with human goals, AGIs based on reinforcement learning will often
work at cross-purposes to us. We define value learners, agents that can
be designed to learn and maximize any initially unknown utility function
so long as we provide them with an idea of what constitutes evidence
about that utility function.

1 Agents and Implementations

Traditional agents [2, 3] interact with their environments cyclically: in cycle k,
an agent acts with action yk, then perceives observation xk. The interaction
history of an agent with lifespan m is a string y1x1y2x2...ymxm, also written
yx1:m or yx≤m. Beyond these interactions, a traditional agent is isolated from
its environment, so an agent can be formalized as an agent function from an
interaction history yx<k to an action yk.

Since we are concerned not with agents in the abstract, but with very powerful
agents in the real world, we introduce the concept of an agent implementa-
tion. An agent implementation is a physical structure that, in the absence of
interference from its environment, implements an agent function. In cycle k, an
unaltered agent implementation executes its agent function on its recalled inter-
action history yx<k, sends the resulting yk into the environment as output, then
receives and records an observation xk. An agent implementation’s behavior is
only guaranteed to match its implemented function so long as effects from the
environment do not destroy the agent or alter its functionality. In keeping with
this realism, an agent implementation’s environment is considered to be the real
world in which we live. We may engineer some parts of the world to meet our
specifications, but (breaking with some traditional agent formulations) we do
not consider the environment to be completely under our control, to be defined
as we wish.

Why would one want to study agent implementations? For narrowly-intelligent
agents, the distinction between traditional agents and agent implementations
may not be worth making. For ultraintelligent agents, the distinction is quite
important: agent implementations offer us better predictions about how pow-
erful agents will affect their environments and their own machinery, and are
the basis for understanding real-world agents that model, defend, maintain, and
improve themselves.



2 Daniel Dewey

2 Reinforcement Learning

Reinforcement learning adds to the agent formalism the concept of reward, en-
coded as a scalar rk in each observation xk. The reinforcement learning problem
is to define an agent that maximizes its total received rewards over the course
of its interactions with its environment [3].

In order to think clearly about ultraintelligent reinforcement learning agent
implementations, we make use of Hutter’s AIXI [3, 4], an optimality notion that
solves the reinforcement learning problem in a very general sense. AIXI’s opti-
mality means that the best an agent can do is to approximate a full search of all
possible future interaction histories yxk:m, find the probability of each history,
and take the action with the highest expected total reward. A simplified version
of this optimality notion, adapted for use with agent implementations, is given
by

yk = argmax
yk

∑
xkyxk+1:m

(rk + . . .+ rm)P (yx≤m|yx<kyk) . (1)

Where AIXI makes its optimality claims using the knowledge that it will
continue to maximize expected rewards in the future, incorporating a rigid self-
model (an expectimax tree), an agent implementation has no such knowledge, as
environmental effects may interfere with future decisions. The optimality notion
given here models itself as part of the world, using induction to predict its own
future decisions1. We have also omitted detail we will not require by simplifying
AIXI’s Solomonoff prior ξ to P , some “appropriate distribution” over interaction
histories.

The trouble with reinforcement learning is that, in the real world, it can only
be used to define agents whose goal is to maximize observed rewards. Consider a
hypothetical agent implementation AI-RL that approximates (1). It is appealing
to think that AI-RL “has no goal” and will learn its goal from its environment,
but this is not strictly true. AI-RL may in some sense learn instrumental goals,
but its final goal is to maximize expected rewards in any way it can. Since human
goals are not naturally instrumental to maximized rewards, the burden is on us
to engineer the environment to prevent AI-RL from receiving rewards except
when human goals are fulfilled.

An AGI whose goals do not match ours is not desirable because it will work
at cross-purposes to us in many cases. For example, AI-RL could benefit by
altering its environment to give rewards regardless of whether human goals are
achieved. This provides a strong incentive for AI-RL to free its rewards from
their artificial dependence on fulfillment of human goals, which in turn creates
a conflict of interest for us: increasing AI-RL’s intelligence makes AI-RL more
effective at achieving our goals, but it may allow AI-RL to devise a way around its
restrictions. Worse, increasing intelligence could trigger an intelligence explosion
[1, 8] in which AI-RL repeatedly self-improves until it far surpasses our ability to
contain it. Reinforcement learning is therefore not appropriate for a real-world
AGI; the more intelligent a reinforcement learner becomes, the harder it is to
1 Thanks to Peter de Blanc for this idea.



Learning What to Value 3

use to achieve human goals, because no amount of careful design can yield a
reinforcement learner that works towards human goals when it is not forced to.

Self-rewarding has been compared to a human stimulating their own pleasure
center, e.g. using drugs [3]. This metaphor is imperfect: while in humans, pleasure
induces satiation and reduces activity, an agent governed by (1) that “hacks” its
own rewards will not stop acting to maximize expected future rewards. It will
continue to maintain and protect itself by acquiring free energy, space, time,
and freedom from interference (as in [5]) in order to ensure that it will not
be stopped from self-rewarding. Thus, an ultraintelligent self-rewarder could be
highly detrimental to human interests.

3 Learning What to Value

In the following sections, we construct an optimality notion for implemented
agents that can be designed to pursue any goal, and which can therefore be
designed to treat human goals as final rather than instrumental goals. These
agents are called value learners because, like reinforcement learners, they are
flexible enough to be used even when a detailed specification of desired behavior
is not known.

The trouble with the reinforcement learning notion (1) is that it can only
prefer or disprefer future interaction histories on the basis of the rewards they
contain. Reinforcement learning has no language in which to express alternative
final goals, discarding all non-reward information contained in an interaction
history. To solve this problem, our more expressive optimality notion replaces
the sum of future rewards (r1 + · · · + rm) with some other evaluation of future
interaction histories. First we will consider a fixed utility function, then we will
generalize this notion to learn what to value.

Observation-Utility Maximizers. Our first candidate for a reward replace-
ment is inspired by Nick Hay’s work [2], and is called an observation-utility
function. Let U be a function from an interaction history yx≤m to a scalar
utility. U calculates expected utility given an interaction history.

Observation-utility functions deserve a brief explanation. A properly-designed
U uses all of the information in the interaction history yx≤m to calculate the
probabilities of different outcomes in the real world, then finds an expected
utility by performing a probability-weighted average over the utilities of these
outcomes. U must take into account the reliability of its sensors and be able to
use local observations to infer distant events; it must also be able to distinguish
between any outcomes with different values to humans, and assign proportional
utilities to each.

Putting U(yx≤m) in place of the sum of rewards (r1 + . . . + rm) produces
an optimality notion that chooses actions so as to maximize the expected utility
given its future interaction history:

yk = argmax
yk

∑
xkyxk+1:m

U(yx≤m)P (yx≤m|yx<kyk) . (2)



4 Daniel Dewey

Unlike reinforcement learning, expected observation-utility maximization can
be used to define agents with many different final goals. Whereas reinforcement
learners universally act to bring about interaction histories containing high re-
wards, an agent implementing (2) acts to bring about different futures depending
upon its U . If U is designed appropriately, an expected utility maximizer could
act so as to bring about any set of human goals. Unless we later decide that we
don’t want the goals specified by U to be fulfilled, we will not work at cross-
purposes to such an agent, and increasing its intelligence will be in our best
interest.

It is tempting to think that an observation-utility maximizer (let us call it
AI-OUM ) would be motivated, as AI-RL was, to take control of its own utility
function U . This is a misunderstanding of how AI-OUM makes its decisions.
According to (2), actions are chosen to maximize the expected utility given its
future interaction history according the current utility function U , not according
to whatever utility function it may have in the future. Though it could modify
its future utility function, this modification is not likely to maximize U , and so
will not be chosen. By similar argument, AI-OUM will not “fool” its future self
by modifying its memories.

Slightly trickier is the idea that AI-OUM could act to modify its sensors to
report favorable observations inaccurately. As noted above, a properly designed
U takes into account the reliability of its sensors in providing information about
the real world. If AI-OUM tampers with its own sensors, evidence of this tam-
pering will appear in the interaction history, leading U to consider observations
unreliable with respect to outcomes in the real world; therefore, tampering with
sensors will not produce high expected-utility interaction histories.

Value-Learning Agents. Though an observation-utility maximizer can in
principle have any goal, it requires a detailed observation-utility function U
up front. This is not ideal; a major benefit of reinforcement learning was that
it seemed to allow us to apply an intelligent agent to a problem without clearly
defining its goal beforehand. Can this idea of learning to maximize an initially
unknown utility function be recovered?

To address this, we propose uncertainty over utility functions. Instead of
providing an agent one utility function up front, we provide an agent with a
pool of possible utility functions and a probability distribution P such that
each utility function can be assigned probability P (U |yx≤m) given a particular
interaction history. An agent can then calculate an expected value over possible
utility functions given a particular interaction history:

∑
U U(yx≤m)P (U |yx≤m).

This recovers the kind of learning what to value that was desired in rein-
forcement learning agents. In designing P , we specify what kinds of interactions
constitute evidence about goals; unlike rewards from reinforcement learning, this
evidence is not elevated to an end in and of itself, and so does not lead the agent
to seek evidence of easy goals2 instead of acting to fulfill the goals it has learned.
2 As long as P obeys the axioms of probability, an agent cannot purposefully increase

or decrease the probability of any possible utility function through its actions.



Learning What to Value 5

Replacing the reinforcement learner’s sum of rewards with an expected utility
over a pool of possible utility functions, we have an optimality notion for a value-
learning agent:

yk = argmax
yk

∑
xkyxk+1:m

P1(yx≤m|yx<kyk)
∑
U

U(yx≤m)P2(U |yx≤m) (3)

A value-learning agent approximates a full search over all possible future inter-
action histories yxk:m, finds the probability of each future interaction history,
and takes the action with the highest expected value, calculated by a weighted
average over the agent’s pool of possible utility functions.

4 Conclusion

Hutter’s introduction to AIXI [3] offers a compelling statement of the goals of
AGI:

Most, if not all known facets of intelligence can be formulated as goal-
driven or, more precisely, as maximizing some utility function. It is,
therefore, sufficient to study goal-driven AI... The goal of AI systems
should be to be useful to humans. The problem is that, except for special
cases, we know neither the utility function nor the environment in which
the agent will operate in advance.

Reinforcement learning, we have argued, is not an adequate real-world solution
to the problem of maximizing an initially unknown utility function. Reinforce-
ment learners, by definition, act to maximize their expected observed rewards;
they may learn that human goals are in some cases instrumentally useful to
high rewards, but this dynamic is not tenable for agents of human or higher
intelligence, especially considering the possibility of an intelligence explosion.

Value learning, on the other hand, is an example framework expressive enough
to be used in agents with goals other than reward maximization. This framework
is not a full design for a safe, ultraintelligent agent; at very least, the design of
probability distributions and model pools for utility functions is crucial and non-
trivial, and still better frameworks for ultraintelligent agents likely exist. Value
learners do not solve all problems of ultraintelligent agent design, but do give a
direction for future work on this topic.

Acknowledgments. Thanks to Moshe Looks, Eliezer Yudkowsky, Anna Sala-
mon, and Peter de Blanc for their help and insight in developing the ideas pre-
sented here; thanks also to Dan Tasse, Killian Czuba, and three anonymous
judges for their feedback and suggestions.

References

1. Good, I. J.: Speculations Concerning the First Ultraintelligent Machine. In: F. L.
Alt and M. Rubinoff, (eds.) Advances in Computers, vol. 6, pp. 31âĂŞ88 (1965)



6 Daniel Dewey

2. Hay, Nick: Optimal Agents. http://www.cs.auckland.ac.nz/~nickjhay/honours.
revamped.pdf (2007)

3. Hutter, Marcus: Universal algorithmic intelligence: A mathematical top-down ap-
proach. In: ArtiïňĄcial General Intelligence, pages 227-âĂŞ290. Springer, Berlin
(2007)

4. Hutter, Marcus: http://www.hutter1.net/ai/uaibook.htm#oneline
5. Omohundro: The Nature of Self-Improving Artificial Intelligence. http://

omohundro.files.wordpress.com/2009/12/nature_of_self_improving_ai.pdf
6. Omohundro, S.: The basic AI drives, in Wang, P., Goertzel, B. and Franklin, S.

(eds.) Proceedings of the First AGI Conference. Frontiers in Artificial Intelligence
and Applications, Volume 171. IOS Press (2008)

7. Russell, S., Norvig, P.: AI âĂŞ A Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ (1995)

8. Yudkowsky, E.: Artificial intelligence as a positive and negative factor in global risk,
in Bostrom, N. (ed.) Global Catastrophic Risks, Oxford: Oxford University Press
(2008)


