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Abstract. Given the likely large impact of artificial general intelligence,
a formal theory of intelligence is desirable. To further this research pro-
gram, we present a representation theorem governing the integration of
causal models with decision theory. This theorem puts formal bounds
on the applicability of the submodel hypothesis, a normative theory of
decision counterfactuals that has previously been argued on a priori and
practical grounds, as well as by comparison to theories of counterfactual
cognition in humans. We are able to prove four conditions under which
the submodel hypothesis holds, forcing any preference between acts to
be consistent with some utility function over causal submodels.

1 Introduction

Artificial general intelligence will likely have a large impact on the world. It is
plausible that the course of AGI research will influence the character of this
impact significantly, and therefore that researchers can take an active role in
managing the impact of AGI. For example, Arel [1] argues that reinforcement
learning is likely to cause an “adversarial” dynamic, and Goertzel [8] proposes
ways to bias AGI development towards “human-friendliness.”

A particularly large impact is predicted by I. J. Good’s intelligence explosion
theory [9, 3, 4], which argues that repeated self-improvement could yield super-
intelligent (and hence super-impactful) AGIs. A few recent accounts of how an
intelligence explosion could come about, what its effects could be, or how it
could be managed include Schmidhuber [17], Hutter [10], Legg [13], Goertzel |7],
Norvig [16, pp. 1037], Chalmers [3, 4], Bostrom [2], Muehlhauser and Salamon
[14], and Yudkowsky [23].

With this in mind, a formal theory of intelligence is preferable to a less formal
understanding. First, though we won’t be able to prove what the final result of
an AGI’s actions will be, we may be able to prove that it is pursuing a desirable
goal, in the sense that it is Pareto-optimal, maximizes expected value, or is the
best approximation possible given space and time constraints [11]; this appears
to be the highest level of certainty available to us [24,2]. Second, we may be
able to design an AGI that has a formal understanding of its own intelligence,
which could then execute a series of provably goal-retaining self-improvements,
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where an equally long series of heuristic self-modifications would carry a high
risk of “goal drift” [22]. Indeed, the theory of provably optimal self-improvement
has been under investigation for some time by Schmidhuber, under the name of
“Godel machines” (e.g. [18]).

In searching for a formal theory of intelligence, this paper focuses on decision
theory as it applies to causal models. If an agent holds its beliefs in the form of
a causal model, is there a provably valid way that it should use that model to
make decisions?

We consider the submodel hypothesis: “If an agent holds its beliefs in the form
of a causal model, then it should use submodels as decision counterfactuals.” We
are able to show that the submodel hypothesis holds over a sharply defined set
of decision problems by proving a representation theorem: an agent’s preferences
can be represented by a utility function over submodels if and only if they are
complete, transitive, function-independent, and variable-independent.

2 Causal Models

A causal model represents events and the relationships between them as vari-
ables and functions, respectively. For each variable, a model contains up to one
function that calculates the value of that variable from the values of a set of
other variables, representing the way that event depends on other events®. This
allows a causal model to implicitly encode a joint distribution over values of the
variables in the model; if a particular set of variable values is compatible with
the functions between the variables, then it has a non-zero probability in the
joint distribution. If an agent has observed a certain joint distribution of events
in the world, it may be able in some cases to infer an underlying causal structure,
and thereafter to represent its world using a causal model. For a full exposition
of causal models and their properties, see [15].

In this paper, causal models will be written M or M’, variables X or Y, and
values of variable X will be written x or 2’ (except in concrete cases, e.g. variable
“Switch” with values “on” and “off”). If X’s value in M is given by function f
applied to values of variables Y, this is written X = f(Y). If X’s value is given
by a constant function with value x, this is written X = x.

Causal models can be pictured in two complementary ways: as a set of struc-
tural equations representing the functions, or as a causal diagram, a directed
graph representing the dependencies and conditional independencies that hold
between the variables.

The canonical example of a causal model (from [15]) is shown in Figure
1. It is a rudimentary model of the relationships between the Season, whether
Rain is falling, whether a Sprinkler is on, whether the sidewalk is Wet, and
whether the sidewalk is Slippery. In the causal diagram, an arrow from Season
to Sprinkler indicates that the season plays an unmediated role in determining
whether the sprinkler is on, though the graph does not show precisely what the

! To simplify this work, error factors are left out of our account of causal models; rein-
troducing them should not interfere with our representation theorem or conclusions.



@‘if‘@

Rain = (Season = winter V Season = fall) ? yes : no
Sprinkler = (Season = spring V Season = summer) ? on : off
Wet = (Rain = falling Vv Sprinkler = on) ? yes : no

Slippery = Wet ? yes : no

Fig. 1.

relationship is. In the set of functional equations, the second equation shows the
full relationship: in spring and summer, the sprinkler is on, and otherwise, it is
off.

A submodel is a kind of causal model. Let M be a causal model, X be
a variable, and = be a value of that variable: submodel M, is derived from
M by replacing X’s function with the constant function X = z. Submodels
may more generally replace a whole set of variables’ functions with a set of
constant functions, but this generalization will not be needed here. We use one
non-standard notation: let My _ ¢y denote the model derived by replacing X’s
function with f over values of Y in M.

3 The Submodel Hypothesis

The submodel hypothesis asserts that if an agent holds its beliefs in the form of
a causal model, then it ought to use submodels as decision counterfactuals. A
decision counterfactual is an agent’s predictions of what would happen if it were
to take a particular action. Thus, the submodel hypothesis can be restated as
follows: “If an agent holds its beliefs in the form of a causal model, then it ought
to predict the consequences of potential actions by replacing particular functions
in that model with constants, and then choose the action whose consequences
are most desirable.”

In [15], Pearl argues for the submodel hypothesis by demonstrating how it
avoids evidentialist decision errors, and by showing how it is formally very similar
to Lewis’ “closest world” theory of human counterfactual cognition [6]. He also
argues that agents should model their own actions as uncaused “objects of free
choice”, and that the submodel method is the natural formalization of this idea.

Yudkowsky [25] builds on this work, arguing that decisions should be treated
as abstract computations, representing them with variables that explain cor-
relations in uncertainty stemming from bounded reasoning time and ability.
Yudkowsky shows that agents who use submodels (of these kinds of models)



as decision counterfactuals outperform other agents on many difficult decision
theoretic problems, including Newcomb-like problems (where agents are simu-
lated or predicted by their environments) and Prisoner’s-dilemma-like problems
(where certain types of coordination between agents are required to reach more
desirable equilibria). Yudkowsky also asserts in [26] that his framework “explains
why the counterfactual surgery can have the form it does”.

In this paper, we seek formal justification: what kinds of agents, in what
kinds of decision problems, must use submodels (or an equivalent procedure) as
decision counterfactuals? Conversely, what do the necessary and sufficient con-
ditions for the submodel hypothesis tell us about its plausibility as a normative
theory of decision-making?

4 Integrating Causal Models with Decision Theory

Causal models are not a standard part of decision theory, so we begin with a
simple, naturalistic integration of causal-model-based beliefs into decision theory.

Suppose that an agent holds its beliefs in the form of a causal model M. So
that the model can guide the agent in making a choice, let some variable X in
M represent the current decision, and let the rest of the model represent the
decision’s relationships to other events.

Though values of X represent different choices, a single variable value does
not contain the beliefs the agent uses to make its decision. In order to state an
agent’s preferences, it will be convenient to bundle beliefs and choices together
into acts. Each act is a pair (M, z), where X taking value x represents the choice
of this act, so that all of the information an agent has about an act is contained
within the act itself. We can therefore define a decision problem to be a set
of acts; an agent solves a decision problem by choosing one of the acts. Since
beliefs are bundled with acts, a weak preference between acts, -, can be used
to characterize all of the agent’s decisions in all possible states of belief. We can
now state the submodel hypothesis formally:

An agent should act according to a preference over acts ¥, that is repre-
sentable by a utility function over submodels; i.e., there should exist a U
from submodels to reals such that

(M, z) 7 (M',y) <= U(M,)>U(M,).

~

5 The Conditions

We have found four conditions on preferences over acts that are jointly equivalent
to representability by a utility function over submodels. The first and second can
be plausibly argued for by assuming that the agent is consequentialist; the third
and fourth are novel, and whether they are justified is still an open question.
Suppose that the agent is consequentialist: it chooses one act or another
for the sake of achieving a more desirable eventual outcome. If this is so, then



even acts that could never appear in the same decision problem, such as (M, x)
and (M’,y), should be comparable according to the desirability of the eventual
outcomes they are expected to bring about. Consequentialism, then, implies that
an agent’s preference over acts should be complete:

(A-B)V(BZ A (Completeness.)

Likewise, unless the agent’s concept of desirability has cycles (in which outcome
1 is better than 2, 2 is better than 3, and 3 is better than 1), its preference over
outcomes, and hence over acts, should be transitive:

(AzB)ANBLZCO)=(AzC) (Transitivity.)

It thus seems plausible that a consequentialist agent must have a complete and
transitive preference over acts.

The third and fourth conditions are novel, and apply specifically to agents
whose beliefs are held as causal models. Recall that each act specifies a particular
variable to represent the decision event; if the agent is naturalistic, meaning that
it represents its own decision process in the same way that it represents other
cause-effect relationships, then the decision variable’s function must represent
the agent’s decision process. Function-independence states that if two acts differ
only in the function representing the decision process, they must be equally
preferable:

(M, z) ~ (Mx—fvy,T). (Function-independence)

The fourth condition, variable-independence, also requires certain indifferences
between acts. In particular, variable-independence applies to acts that model
the agent’s decision as uncaused, representing it as a variable with no parents.
Formally, variable-independence states that if a pair of acts share a model, and
if each act represents the agent’s decision process as a function of no inputs,
then the two acts must be equally preferable:

X=2xANY=yin M= (M,z)~ (M,y). (Variable-independence)

We have found function-independence and variable-independence to be necessary
for the submodel hypothesis, but attempts to discover whether and how they
are generally justified have not been successful. This could be a fruitful area for
future work.

6 The Representation Theorem

We are now ready to show that the four conditions together are necessary and
sufficient for the submodel hypothesis:

Theorem 1. If and only if a preference = over acts is complete, transitive,
function-independent, and variable-independent, then - can be represented by a
utility function over submodels, i.e. there exists a U from submodels to reals such
that

(M, z) = (M',y) <= U(M,) = U(M,).



Proof. First, it is easy to show that each condition is necessary. Assuming that
U represents 7, =~ must be:

~ o~

Complete: Any two real utilities are comparable with >, so if U is complete
and represents -, then any two acts must be comparable with ~.

Transitive: Any three real utilities obey transitivity, so if U is complete and
represents -, then any three acts must be transitive under .

Function-independent:

M, = (MX:f(Y))x
= U(M;) = U((Mx=f(v))a)
= (M, z) ~ (Mx—yv), ).

Variable-independent:

X=zANY=yinM
= M=M, =M,
= U(M;) = U(M,)
= (M, z) ~ (M,y).

Second, we show that the conditions are sufficient for the existence of a utility
representation over submodels; from here on, we assume that all conditions hold.
Let a be any function from submodels “back to corresponding acts”, meaning
that a(S) = (M, z) = S = M,. The following lemmas will be useful:

Lemma 1. VM, z : (M, z) ~ a(M,).
Proof. Let (M',y) = a(M,). By definition of o, M, = M.

(M, z) ~ (M,,x) by function-independence,
~ (M, x) since M,, = M;

Y

because M, = M,, we know that X =z in M, and trivially Y =y in M, and
so by variable-independence,

~ <M/ ) y>
~ (M, y) by function-independence,
~ a(M,),

and so (M, x) ~ a(M,). O

Lemma 2. (M,z) = (M',y) < o(M,) 7 o(M)).



Proof. =: Assume (M, z) 7 (M',y). By Lemma 1,
a(My) ~ (M, z) = (M',y) ~ a(M,),

and since 7 is transitive, (M) 2 a(M,).
< Assume a(M,) Z a(M)). By Lemma 1,

(M, z) ~ a(Mz) Z (M) ~ (M, y),
and since 7 is transitive, (M, z) == (M’ y). O

Now we can construct a utility function on submodels and to show that it
represents ~. Let v be an injective function from submodels to the set {27 :
n € N}, and let U be defined as

uS)= Y. o).

S":a(S)ma(S”)

Since the sum of {27 : n € N} converges, the utility function is defined even
when the set of submodels is (countably) infinite [21].

First, we will show that every preference over acts is represented in utilities.
Assume that one act is weakly preferred over another, so that (M, z) = (M’ y).
By Lemma 2, a(M,) Z «(M,). Since  is transitive, any a(S) weakly dispre-
ferred to a(M,) is also dispreferred to a (M), and so

{S:a(My) Z ()} 2{S - a(M)) Z aS)}.

By definition of U, we conclude that U(M,) > U(M,)).

Second, we will show that every utility difference represents a preference. Let
U(M,) > U(M,). To draw a contradiction, assume that a(M,) 7 «(M,). By
completeness, a(M,) = a(M,). It follows by transitivity that

{S:a(M,) Z a(8)} {5 a(M.) T a(S)}.

By definition of U, this means that U(M,) > U(M.,), a contradiction; therefore,
a(M,) Z a(M,). By Lemma 2, (M, x) 2 (M',y).

Thus, we have shown that the conditions given are necessary and sufficient for
the existence of a representative utility function over submodels; the submodel
hypothesis is confirmed over the class of problems defined by the conditions. [

7 Conclusion

In this paper, we have shown a set of four conditions under which the submodel
hypothesis is confirmed, i.e. an agent whose beliefs are held as a causal model
must have preferences that can be represented by a utility function over sub-
models. This puts sharply-defined boundaries on where the submodel hypothesis,
which has previously been argued by Pearl [15] and Yudkowsky [25], is justified
and required. More broadly, we have aimed to contribute to a formal theory of
intelligence, with the goal of shaping the impact of AGI to be safe and beneficial.
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